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Abstract

During lateral flight-test maneuvers of a V/STOL

research aircraft, large errors in static pressure were
observed. An investigation of the data showed a strong
correlation of the pressure record with variations in

sideslip angle. The sensors for both measurements were
located on a standard air-data nose boom. This paper

describes an algorithm based on potential flow over a
cylinder that was developed to correct the pressure record
for sideslip-induced errors. In order to properly apply the

correction algorithm, it was necessary to estimate and cor-
rect the lag error in the pressure system. The method
developed for estimating pressure lag is based on the

coupling of sideslip activity into the static ports and can
be used as a standard flight-test procedure. The paper dis-
cusses the estimation procedure and presents the corrected
static-pressure record for a typical lateral maneuver. It is
shown that application of the correctionalgorithm effec-
tively attenuates sideslip-induced errors.

L Introduction

In the flight-testing of aircraft, it is essential that

accurate measurements of static and total air pressure be
obtained. Usually, the pressure sensors are mounted ahead
of the aircmlt, neat the tip of a nose beom, to beuer sense
the "free sueam" conditions. However, unless a swivel

pitot static head is used, the pressure measurements will
be in error whenever the boom is yawed with respect to
the direction of airflow. The static-pressure measurement
is the most affected: its errors depend on the angles of

attack and sideslip of the boom as well as on the number
and location of static ports around the circumference of
the boom. Gracey discusses this effect as well as other
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errors that occur in aircraft pressure-measurement
devices. I

The investigation reported in this paper was prompted
by the occurrenceof large errors in the measurement of

static pressure during lateral flight-test maneuvers of a
V/STOL research aircraft (VSRA). Observation of the

data revealed a strong correlation between the pressure
and sideslip-angle measurement records. An algorithm
Imsed on potential flow over a cylinder was developed to
correct the pressure record for sideslip-induced errors.

The algorithm was modified to account for separation of
the laminar boundary layer. In order to properly apply the

correction algorithm, it was necessary to estimate and cor-
rect the lag in the pressure system. The method developed
for estimating pressure lag is based on the coupling of

sideslip activity into the static ports and can be used as a
standard flight-test procedure.

The paper procee_ as follows: First, the cause and
effect of the pressure errors observed during flight lest are
indicated and then the correction algorithm is derived.

The flight-data procedures for applying the pressure cor-
rection and estimating the separation angle and pressure
lag are described, and results are shown for a typical

lateral maneuver. Finally, the implications of the method
are discussed in the concluding remarks.

II. Problem Statement

The VSRA is equipped with the industry-standard
flight-test boom shown in Fig. 1. The boom houses the
pitot static sensors for measurement of total and static
pressure, as well as the flow-angle sensors for measure-

merit of angles of attack (alpha vane) and sideslip (beta
vane). The staticpressureissensed at two closely space.A

ports locatedsymmetrically on the top and bottom of the

cylindrical tube about four diameters aft of the pitot head.
The tube diameter at lhe static ports is 0.62 inch, a value

for which, from a cross-flow standpoint, the Reynold's
number will remain subcritical, even at large yaw angles
and high airspeed. 2 Any separation of the boundary layer
from the cylinder near the static ports will therefore be
laminar in nature.



The beta-vane and static-pressure records shown in

Fig. 2 are observed to be strongly correlated. The effect of
sideslip-induced pressure error is evident in the record of
calculated pressure altitude, where it is seen that a sideslip
of I0" causes an altitude variation of about I00 feet. It
should be mentioned here that the nose-boom manufac-

turer offers a test program to provide individual calibra-
tion curves of pitot and static pressure as a function of

Mach number, angle of attack, and sideslip over a
customer-specified flight regime. It was decided, how-
ever, to try to express the static-pressure errors on a

yawed cylinder analytically by using a potential-flow
approach, suitably modified to include boundary-layer
separation. 3 The resulting algorithm could then be used to

correct the static-pressure record. This approach to the
problem is described in the sections that follow.

HI. Correction Algorithm

The effect of a yawed airflow over the cylindrical
nose boom will be modeled by assuming that the flow is
frictionless, and that the cross flow and axial flow can be

considered separately, It is also assumed that the nose
boom is aligned with the longitudinal body axis of the air-

craft. The plane containing the static ports is shown in
Fig. 3(a), where, to simplify the analysis, only one upper
and one lower port are indicated. The potential flow solu-
tion for the cross-flow component of tangential velocity at
the lower static port is given by 4

Vc = 2 (v 2 + w2) I/2 sin 0 (1)

where v, w are the components of the free-stream veloc-

iv/in the plane perpendicUlar to the cylinder, and 0 is the
angle between the line joining the stagnation points and
the line joining the static ports. Now, if u is the axial
component of free-stream velocity, the magnitude of the

tangential velocity at the lower port is

V ffi[u2 + 4 (v2 + w2) sin2 0 ]1/2 (2)

The error in static pressure at the lower port,
expressed in coefficient form, is given by

ACp= (p- p_) / ( pVt2 / 2) (3)

where p isthe pressure sensed at the port, p. isthe free-
stream static pressure, p is the density, and Vt is the
magnitude of the free-stream velocity. Note that

Vt = (u2 + v 2 + w2) 1/2 (4)

The use of Bemoulli's equation 4 to express the relation

between pressure and velocity allows Eq. (3) to be written
as

ACp -- 1 - V 2 / Vt2 (5)

Note that the flow-angle sensors mounted on the nose
boom near the static ports have the relations

tan13= v/u ; tana = w/u (6)

•where 13 is the angle sensed by the beta vane, and a is
the angle sensed by the alpha vane. It can be seen from
Fig. 3(a) that

tan0 = v/w= tan13/tana (7)

The expressionsof Eqs. (2), (4), and (6) can be used to
write Eq.(5) as

ACp = K (1 - 4 sin2 O)

K = (tan 2 _ + tan2 a) / (I + tan2 _ + tan2 ex) (8)

Were the flow over the cylinder truly inviscid, the
pressure sensed at the upper port would be the same as
that at the lower port. Empirical studies have shown,

however, that boundary-layer separation does occur (as
illustrated in Fig, 3(b)), so that the upper and lower ports
sense different pressures. For example, a port in the wake
of a separated boundary layer would contribute an error of

ACt,= K (I-4 sin2 0s) (9)

where 0s is the angle at which separation occurs. Now, if
it is assumed that 0s < 90", then for 0 < Os,only one port
is in the wake of separated flow. For this case the average

of the pressure envrs is given by

ACp = K [1 - 2 (sin 2 0 + sin2 0s)] (10)

It follows that for O> Os, both ports are in the wake of
separated flow, so that the average pressure error is given
by Eq. (9). The application of the algorithm given by
Eqs. (9) and (I0) for correction of the static pressure
record is described next.

IV. Application

The pressure-correction algorithmderivedin the
previous section is a function of the alphaand betavane
angles, and the flow-separation angle. A block diagram
outlining the application of the algorithm is shown in
Fig. 4. Note that any lag in the VSRA pressure system



mustbeaccountedfox,sincethesidesliperror is induced
at the static-port location, while the pressure transducer is

located 25 feet aft of the static ports, with the usual pneu-
matic tube interconnection. Before making the lag correc-
tion, however, the separation angle must be estimated,
and, if the pressure system lag is not known, it also must
be estimated from the data.

The procedure for estimating the separation angle is
simple: The angle 0s is varied until the "best" ctxzection

of the low-frequency errors is obtained. For the VSRA
nose boom, a value of 0s = 45" produced the best correc-
tion. It is interesting to note that for 0s = 45", Eq. (7) can
be used with Eq. (10) to obtain the expression

ACp--'-2 tan2 _ / (1 + tan2 _ + tan2 (x) (11)

where it is seen that no correction is necessary for zero

sideslip. Hence, it would appear that the boom design is
optimized for longitudinal maneuvers. This seems to be
the logical choice, since these maneuvers are the most
important in fiight-test performance studies.

The procedure for estimating the pressure system lag
is as follows: A f'Lrst-ordercurve fit to the raw pressure
coefficient produced residuals that enhanced the sideslip-
induced errors. The residuals were then correlated with

the correction coefficient ACp (with 0s ffi45"). The cor-
responding correlation curve is shown in Fig. 5. The pres-
sure-system lag is seen from that curve to be about
0.35 sec. A lag model 1 consisting of a pure (acoustic)

delay of 0.1 sec in tandem with a simple first-order lag of
0.35 sec removed the lag from the correlation curve and
realized a suitable attenuation of high-frequency errors

when the sideslip correction was applied.

The sideslip and corrected static-pressure and
pressure-altitude records are shown in Fig. 6_The raw and
corrected pressure records were also used to generate
records of pressure altitude (corrected for temperature 5)

that are shown in Fig. 7 with the inertial (radar-derived)
altitude for comparison. There the sideslip-induced errors

are seen to have been reduced by more than a factor of
five. Similar results have been obtained with other

maneuvers that have significant lateral excitation. It
should be noted that the coupling that exists between
sideslip and static pressure might be used in a standard
flight-test procedure for calibration of pressure lag. It
would be desirable, however, to perform a ground test of
the pressure system to validate the lag model.

V. Concluding Remarks

What appeared to be a serious cross-coupled static-
pressure measurement problem during lateral maneuvers

has been solved by applying an algorithm based on poten-
tial-flow theory. The algorithm accounts for viscous
effects that cause separation of the nose-boom boundary
layer. Furthermore, the coupling of sideslip activity into
the static-pressure port makes it possible to perform a
flight-data pressure-lag calibration that could be included

as a standard fiight-test procedure for research aircraft.
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